
J .  Fluid Mech. (1983), wol. 130, p p .  59-72 

Printed in Great Britain 

Perturbed bifurcation theory for Poiseuille annular flow 
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The consequence of imposing an axisymmetric travelling-wave disturbance on the 
Poiseuille flow between two concentric cylinders is examined. A nonlinear analysis 
is taken, using perturbed bifurcation and singular perturbation theory, to determine 
how resonant wall oscillations affect flow stability. Subcritical, stable, finite-amplitude 
perturbations to  the basic Poiseuille flow are found and conjectures on their 
significance are given. 

1. Introduction 
I n  this section we give a description of the basic problem and describe the equations 

of motion. Section 2 outlines the linear stability theory for the Poiseuille motion that 
leads to an Orr-Sommerfeld-like system of equations for the disturbance stream 
function. The formal perturbation expansions to determine the bifurcation solutions 
are also noted. These are evaluated numerically since they constitute the lowest-order 
terms in our subsequent work. Section 3 describes the perturbed bifurcation analysis 
to examine the effect that imposing a travelling-wave disturbance to the outer 
cylinder will have on the stability of the Poiseuille flow. Inner and outer expansions 
(about the critical Reynolds number R,) are formally derived for this singular 
perturbation problem and the effects of resonant oscillations are examined. Section 
4 analyses the amplitude equation for the inner expansion and shows how the 
response curve (relating disturbance amplitude to Reynolds number) varies with the 
rate of change of the wall temporal oscillation with respect to the Reynolds number. 
Section 5 examines the stability of the response curves as the radius ratio 7 
approaches unity (channel flow). Section 6 presents a general discussion of the results 
along with its limitations. 

1 . 1 .  Problem description 
The basic problem consists of the motion of a viscous, incompressible, single-phase 
fluid enclosed between two concentric cylinders. The motion of the fluid is-produced 
by a fixed axial pressure gradient (see figure 1) .  Equations describing this flow are 
derived from the Navier-Stokes equations. Our analysis in this paper will be 
restricted to axisymmetric motions and disturbances. Under these conditions we may 
introduce a stream function @ such that 

( 1 . 1 )  
1 a; i a? 

J7 =--, JT =--- 
' r a r  ' r ax'  

We may resolve this motion into Poiseuille annular flow $ plus a disturbance @', 
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FIGURE 1 .  Concentric cylinders for annular Poiseuille flow; inner radius rl, outer radius r z .  

where 

r& = (r?--ri)/2ln7, q = r l / r 2  

and (U,. is the average ve1ocity.t With this decomposition, we are led to the 
following nonlinear boundary-value problem for the disturbance stream function : 

We can make the problem nondimensional by introducting the values L = +(r2 - rl) 
and ( U , )  as the characteristic length and velocity respectively for the flow. We then 
have 

and the Reynolds number 

From this point on, we will deal with dimensionless quantities only. 

R = <U,> Llv.  

2. Linear stability and bifurcation theory 
Let us write $f = a++, where e is a small parameter measuring the amplitude of 

the disturbance. If we insert this into the dimensionless version of (1.4) and linearize 
in 6 ,  we arrive at the spectral problem for the instability of annular flow. I n  
particular, we are led to  an Orr-Sommerfeld-like system 

$ = $ ’ = 0  a t  r = a , b ,  
t This research was motivated by the problems encountered in the logging of wellbores in 

oil-producing reservoirs. The range 0.183 < 7 < 0.644 is characteristic for this area and this interval 
;Q JPnirf.erJ nn a number of subsequent figures. 
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FIGURE 2. Plot of critical numbers R, for a range of 7-values - linear stability theory. 
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FIGURE 5.  ( R ,  €)-plot of bifurcation curves using A = A, + e2h, from (2.3), 7-range as indicated. Each 
curve corresponds to  a different 7-value. The intercept on the R-axis is the value of R, for that 
particular 7. 
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where we have written U = U,/(Ux>, A = l / R  and 

31. = e-y(A)t @(r*A) .  ( 2 . 2 )  

For any point in the (a, R)-plane the eigenvalue y is generally complex. If its real 
part is positive, the disturbance will decay exponentially in time and the basic 
(Poiseuille) state is said to be stable. If its real part is negative, the disturbance will 
grow in time and give rise to instability. When the eigenvalue is purely imaginary, 
y = iw, we have neutral stability. The locus of points in the (a, R)-plane for which 
a corresponding eigenvalue is purely imaginary is called the neutral curve for that  
eigenvalue; i t  separates stable and unstable regions. R,, the least R for which an 
eigenvalue of the spectral problem has a purely imaginary value, is called the critical 
Reynolds number for the flow. Using a new continuation procedure,? this system has 
been solved for a range of 7-values. A plot of the critical Reynolds numbers for the 
linear stability theory is given in figure 2 .  Plots of the temporal frequency and 
wavenumber a t  the critical points are given in figures 3 and 4. All of these results 
on linear stability have been derived before. In  addition, Joseph & Chen (1974) showed 
that a branch of solutions, periodic in both space and time, bifurcate subcritically 
from the laminar flow solution U a t  R = R,. The bifurcation curves for these 7 values 
are depicted in figure 5.  Floquet analysis (where we examine the stability of 
perturbations about these states) can be used to demonstrate that  these subcritical 
bifurcating solutions (amplitude decreasing with increasing R) are unstable. We can 
compute these solutions by seeking them in the form of a perturbation series about 
the basic state : 

where the zeroth-order terms correspond to the critical eigenvalues and eigenfunctions 
a t  Rc. These calculations were carried out and agree well with those reported by 
Joseph and Chen (1974). They constitute the lowest-order terms for 9 3. 

3. Perturbed bifurcation analysis 
We shall analyse our problem using the methods of Matkowsky & Reiss (1977) and 

Reiss (19777, where the general theory of singular perturbations of bifurcations is 
described. For a discussion on nonlinear effects in (plane) Poiseuille flow, see Meksyn 
& Stuart (1951), Stuart (1960), Watson (1960), Pekeris & Shkoller (1967), Reynolds 
& Potter (1967) and Stewartson & Stuart (1971). Of course this list is by no means 
exhaustive; for a more extensive bibliography on the subject of fluid stability, see 
Joseph (1976). 

3.1. Outer expansions 
We now consider what effect a small ‘imperfection ’ on the shape of the outer cylinder 
will have on the stability of the flow. We impose a sinusoidal radius variation as 
illustrated in figure 6 of amplitude 6 < 1 .  The differential equation (1.4) for 31.‘ remains 
as before, but the boundary conditions change, leading to the new system (we 

The detail8 of this procedure are contained in an appendix that has been lodged in the editorial 
files. Copies may be obtained from the editor or the author on request. 
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Outer wall: r = b + W(X, t )  
F(,., = +($(a - c r )  +&(a 4) 

c =c(h)  = W 0 +  w,(h-Xc) +w,(h-Xc)Z+ 

FIQURE 6. Travelling-wave disturbance imposed on outer cylinder with amplitude 6. Temporal 
frequency c is real and a function of the Reynolds number. 

hereinafter drop the prime convention) 

1 
$r = $x = 0 a t  r = a ,  

$x = -rT Sl$(x, t )  r = rT E b+SF(x, t ) ,  

kT = -2rT at r = rT,  

a t  

b2 - r$ - 2r& In (b /rT)  
b2 + a2- 2r& 

and the differential equation 

where 
L $ + J ( @ ,  D2$) = 0, 

a a d 1 d U a  
at i3X d r r  dr ax 

L = L[U,A] = -D2+ U- D2 -r------AD4. 

(3.2) 

(3.3) 

I n  addition, we impose the condition that @ along with its derivatives with respect 
to x remain bounded as x approaches infinity. Since S alters (1.4) through the 
boundary conditions, we seek an asymptotic expansion of the solution in the form 

a, 

$(x, r ,  t ;  6, R) = Z kj(x, r ,  t ;  R )  8. 
j -0  

(3.4) 

If we perturb about the basic state ($o = 0), insert (3.4) into the above set of 
equations, and equate like powers of 8, we are led to  a series of linear differential 
equations for the $ j .  I n  particular, the expression for using the completeness of 
the 0-S eigenfunctions &, along with their orthogonality relationships, can be 
expressed in the form 

00 

(3.5) 

where 

7 = ct ,  
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and where h, and 6 are derived using the Taylor expansion of $r about r = b in the 
boundary conditions (here * denotes adjoint). I n  the general case, the spatial and 
temporal frequencies of F have no relation to  those of the bifurcation solution. As 
a result, bifurcation is preserved and is either delayed or hastened slightly. These new 
bifurcating solutions are sometimes quasiperiodic in both space and time (for 
details on plane Poiseuille ease see Strumolo 1978). 

In  this paper, we will consider the resonance case for our imperfection, setting the 
wavenumber a of F equal to the wavenumber a, of the critical eigenfunction. We 
also set the real temporal frequency of oscillation c ( A )  a t  lowest order equal to that 
of the eigenfunction, i.e. w, = w,. Then since 

yl(a,, A,) = iw,, c(A,) = wo = wo, 
we have 

lbll+Oo as A+A, provided gl(ao,  A,) =k 0. 

This inadmissible singularity leads us to consider an inner expansion for the region 
A-A, small in $3.2 below. Allowing c to  depend upon A (or equivalently R)  enables 
us to consider the effects of altering dynamically the temporal frequency of the wall 
oscillations with the flow speed. Another interesting case would be to  examine the 
effects of setting a near a,, but this was not done here. 

3.2. Inner expansions 
The value of g l ( a O , A , )  can be shown to be non-zero inour resonance case; hence 
the outer expansion (3.4) is not valid in a neighborhood of A,. This is typical of 
such singular perturbation problems. To obtain a valid asymptotic expansion we must 
first ' stretch ' the neighbourhood of A, by the transformation 

@) = pn> 
where is the stretched variable in the method of matched asymptotic expansions 
and tj = &((). The constant n must be positive since we require S(0) = 0. The 
constants m and n must also be integers since we require that the derivatives of A 
and 6 with respect to p be bounded as p approaches zero. Since c = c ( A ) ,  we also have 

(3.8) c = w, + w1 [pm + higher-order terms. 

$ r ( X >  r ,  s; A(pL), S(p)) = a x ,  r ,  s ;p) = z q x ,  r ,  8) pj, 

We look for a solution in the form 
00 

(3.9) 
j=1 

where s = ct. Inserting this series into (3.1)-(3.3) for $r and equating like powers of 
p leads us to an equation for z ,  of the form 

where 

Lo Zl = q6, (3.10) 

El = ZIT = 0 a t  r = a ,  b,  

z1 = Zl-$ h,, 
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Because the inner expansion is intended to be the continuation of the outer expansion 
in the neighbourhood of A,, we consider solutions zi that  have the same periodicity 
as those of the outer expansion. Since there are non-trivial solutions to the 
homogeneous version of (3.10), the Fredholm alternative theorem implies that  (3.10) 
will have a solution if and only if the inhomogeneous term is orthogonal to the null 
space of the homogeneous adjoint operator. This solvability condition leads to 

where 
so,[K,z*] = 0, 

z* = eiB$,*(r), 8 = a, x - s :  

(3.11) 

Here $,*(r) is the adjoint 0-S eigenfunction a t  criticality. Numerical computations 
give a non-zero inner product, yielding 

q = 0, (3.12) 

z1 = 2 Re ( A  eis$,(r)) 

We determine the complex amplitude A by applying the solvability condition to the 
inhomogeneous terms of the successive higher-order problems. We impose the 
additional conditions that A depend upon all of the parameters and remain finite at 
A = A,. This results in the following equation for A :  

A2A+ C, CA + C, = 0. (3.13) 

We will refer to this as the amplitude equation. The complex quantity C, is a linear 
function of w1 = c'(h,). The coefficients in these functions are evaluated numerically 
from integrals involving the Orr-Sommerfeld eigenfunction and its adjoint. We also 
find 

00 $j 

j = 2  3 '  

and so 
h =A,+@+ z ti-,. 

(3.14) 

(3.15) 

Matching conditions of the method of matched asymptotic expansions could 
then be employed to  determine how the inner and outer expansions 'connect'. 
Composite expansions would then give the uniform asymptotic expansions of the 
solution to this perturbed problem (see Strumolo & Reiss, 1981). 

By using a totally different method of analysis, Hall (1978) analysed the problem 
of the effect of external resonant forcing on the stability of plane Poiseuille (channel) 
flow. Our results for the limiting case as 7 approaches unity agree well with his, which 
gives an equation similar to (3.15). 

4. Analysis of the amplitude equation 

to 
With some elementary algebraic manipulations, the amplitude equation reduces 

p3+P1p = k(Y2-P;T2):,  (4.1) 

where p is the modulus of the complex amplitude A ,  and the quantities /I1 and /I2 
are linear functions of w1 and 6. We solve this equation for 6, with solutions 

(4.2) f ;  = ( * ( p )  = up"+p-"l-~pp"~, 
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FIGURE 7 .  Response states when outer cylinder resonates with critical frequencies and wavenumbers 
a t  R,. Dependence on w1 = c'(A,), the rate of change of the forced temporal oscillation with A.  

where a, b, and r are defined by 

I P a = -~ 
P2 + q 2 ,  

(4.3) 
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The values (+, along with (3.15), give the two R-values a t  which a line of constant 
p would intersect the response curves in figure 7 .  It follows directly from (4.2) that  
the real roots are bounded above by 

p = p m = = p i .  (4.4) 

[ = [  m Zap-;. (4.5) 

The value of ( corresponding to pm is obtained from (4.2) as 

The point ((,, p,) is the maximum of the response curve defined by (4.2). The position 
of this maximum clearly depends upon wl, since a and /3 do. The value of the Reynolds 
number a t  this maximum is given by 

1 - = A, = h C + [ , 8 + O ( d ) .  
Rln 

An elementary analysis, which we do not present here (see Strumolo 1978), shows 
that there are four critical values of w,, denoted by wL, wp, wH, and w*. The value 
of wl, however, is a t  our disposal and this simple allowance yields the varied response 
curves in figure 7 .  For w1 in the interval (wL, wH), the response curve gives the 
amplitude as a single-valued function of R ;  for w1 outside this interval, the response 
curves are multivalued. The significance of the critical value wp is that R, > R, 
(< R,) if w, < wp (> wp). At w1 = wp, R, and R, coincide. I n  the case of com- 
plete resonance, i.e. when the wavenumber and temporal frequency of the imper- 
fection function F coincide with those of the bifurcation solution, we have 

The multivalued response curves define two critical values of R : R, and R,. They 
correspond respectively to  the locations of the upper and lower limit points or ‘noses. ’ 
Their significance will be analysed in $5. The locations of the limit points are 
determined by solving the equations 

wzlh2. w1 = w* = 

This leads to  

(4.10) 

The two noses are then determined by inserting these values into (4.1), solving for 
their corresponding [-values, and using these values in (3.15). The locations of R, 
(figure 7 e )  in the complete resonance case, for a range of 6 and 7 values, are given 
in figure 9 along with the R, values of linear stability theory. 

5. Solution-branch stability analysis 
Let us rewrite the amplitude equation in its original form 

e ,  A2A- ([R,) d, A +fi = 0, 

where the coefficient d, is a function of wl. Figure 7 has provided the response curves 
for the different ranges of w,. We need, however, to  determine the stability of these 
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FIGURE 8. Sample response curve illustrating stable and unstable sections. 

solution branches to small perturbations. By means of Floquet theory, we can easily 
show that, if a dislurbance B of the form B cc eAt is added to the amplitude A ,  the 
exponent h is given by 

where the subscripts r and i denote the real and imaginary parts respectively. The 
stability of the branch is then determined by the values of A+ and A _ .  For example, 
if A- = ,u < 0 and A, = h > 0, we have a saddle point. If A, = a+iP, then we have 
a focus; stable if CL < 0 and unstable if a > 0. The values of h, for different w1 values 
were computed in the limiting case as 7 approached unity. Let us consider the cases 
( d )  and ( e )  in figure 7 .  For w1 near wH, we find that the lower branch is a stable focus 
up to  the lower limit point (nose), the middle branch is an unstable saddle point, while 
the upper branch changes from a stable focus (or node) to a centre to an unstable 
focus as R increases. Figure 8 depicts this for a particular w1 value. As w1 approaches 
w*, the upper branch becomes completely unstable. Hence there is a lower bound 
on the Reynolds number R, below which only one stable branch (near the laminar 
state) exists and above which two stable branches can exist. For the case 7 = 1, we 
find, for example, that, when w1 equals 420, a stable section on the upper branch 
begins at 

R, = RC[l-56.15g+ ...I, 
the centre occurs a t  

R = R,[1-55.18#+ ...I, 
with the upper branch unstable thereafter. The maximum point occurs a t  

R, = R,[1-54.726$+ ...I. 
When w1 equals 500 (w* = 584), no portion of the upper branch is stable. In  the case 
w1 = w*, the lower branch is a stable ~ Q C U S  up to the limit point (nose), while the other 
two branches are unstable. 

Case ( f )  is interesting. A stability analysis here shows that, if w1 is sufficiently 
large (wl > 36000 in the case 7 = i ) ,  then the branch to the right of R, is stable 
for all R !  How we get to this branch, of course, is another matter. 
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FIGURE 9. Plots of critical Reynolds numbers. Solid curve is from linear stability theory. Additional 
curves correspond t o  RN (see figure 7 e )  for various &-values. 

6. Discussion of the results 
Figure 2 depicts the critical Reynolds numbers of the linear stability theory as a 

function of the radius ratio q .  As q decreases, K ,  increases. This might be expected, 
since pipe flow is unconditionally stable to infinitesimal axisymmetric disturbances. 
The limit as 7 approaches zero, however, is not quite pipe flow since the no-slip 
condition must be satisfied at the inner cylinder regardless of its size. Such a limit 
could be approached by moving the inner cylinder with a velocity necessary to 
maintain the parabolic profile, but that  analysis was beyond the scope of the present 
paper. 

In  actual experiments on channel, pipe or annular flow, however, transition takes 
place a t  Reynolds numbcrs much lower than those predicted by tho linear theory, 
and a nonlinear analysis must be taken, as in this paper. Consider the cases (d) - ( f )  
in figure 7. Under our results on the stability of the solution branches,? we find that 
there may be two stable sections: one small-amplitude branch for R < RL, and one 
large-amplitude branch for R, < R. These two stable branches are separated by an 
unstable branch for R, < R < R,, while the upper stable branch loses its stability 
as R increases (see figure 8 for a characteristic response curve). Of course, there is 
a continuum of response curves for the range of uil values. Two points, however, stand 
out:  the interval (H,,R,) lies well below R,, evcm for a small &value (see (3.15)), 

t While $5  reported on the stability calculations for 7 = 1, the results are characteristic for any 
other radius ratio as well. 
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and there are two classes of stable branches - one small-amplitude and one large- 
amplitudc. Since these are magnitudes for the disturbance stream function, the 
analysis indicates that  two possible states can cxist in this range: one near the 
Poiseuille state, and the other further from the Poiseuille state and of a higher 
amplitude. 

Let us  conjecture, then, what might happen according to our results as the Reynolds 
number is slowly increased. For small R, the flow remains approximately Poiseuille 
(on the lower stable branch). As R increases, there could exist a cycling between two 
stable states: one nearly Poiseuille and the other periodic and of higher amplitude, 
due to additional small-scale perturbations present in the system. Finally, the 
laminar state completely loses its stability and is replaced by some higher amplitude 
state. This is not the first time that a hypothesis of ‘cycling in phase space between 
two distinct relatively stable but weakly attracting solutions ’ has been proposed 
(see Joseph 1976; Wyganski & Champagne 1973). However, 1 am unaware of any 
formal demonstration of their existence for these flows until now. 

This cycling behaviour is similar to what is observed experimentally (Lessen & 
Huang 1976; Subbotin 1978; Wygnanski & Champagne 1973). Initially we have a 
laminar state. As R increases, sporadic bursts occur, with the flow oscillating from 
a laminar state to a ‘turbulent ’ state and back again. As R increases further, the 
laminar state is eventually replaced by a turbulent one. 

Of course, these bursts are not axisymmetric in nature, and so we cannot conclude 
that the cycling states we derive theoretically are those observed experimentally. An 
additional limitation of an axisymmetric analysis is that it excludes modes which may 
be even more unstable e.g. in pipe flow the most energetic initial disturbance is a spiral 
mode with azimuthal periodicity (Joseph 1976). 

However, the assumption of resonant oscillations in an actual experiment may not 
be as unrealistic as one might first think. Karnitz et al. (1974) noted that the walls 
of their channel were not perfectly flat (as is assumed in a mathematical analysis). 
In addition, they observed that, prior fo transition, periodic disturbances with the 
frequency and wavenumber of the Tollmien-Schlichting waves appeared a t  the walls. 
These are exactly the frequencies and wavenumbers that I consider to exist there 
at  criticality. Finally, the allowance for the forced oscillation frequency c to vary with 
the Reynolds number could be made more palatable from an experimental standpoint 
when one realizes that altering the fluid speed will alter the vibrational characteristics 
of the machine used to drive it. 

A final example illustrating how such travelling-wave disturbances could exist 
comes from the logging of oil wells. Let us consider a two-phase system consisting 
of a liquid and a gas flowing together in a pipe. To measure the flow rates in such 
a system, a cylindrical tool is placed concentrically in the pipe. Depending upon the 
velocities of the two phases, different flow regime patterns can arise. In  one such 
pattern, the liquid forms a thin film around the wall of the pipe with the gas 
composing the central core. This regime is called annular flow.? I n  this case, 
axisymmetric travelling waves form on the liquid film and propagate up the pipe. 
Treating the gas as the single phase of interest, we can examine its stability to wall 
motions, where the liquid waves constitute the outer wall. Thus wave motions of the 
type discussed in this paper are physically realizable. 

What, then, has our axisymmetric analysis shown? When there are no 

‘r The term ‘annular flow’ in two-phase-flow jargon refers to  the annular configuration of the 
liquid in the pipe, and not t o  the fact that  the flow is between two concentric cylinders. 
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perturbations on the outer cylinder, we know that the only stable solution up to R, 
is the Poiseuille state; the subcritical bifurcating solutions are unstable. With a 
resonant perturbation imposed, we have shown that the stability picture is signifi- 
cantly altered. If the temporal oscillation is dynamically adjusted with the Reynolds 
number as in figures 7 (d ,  e ) ,  we arrive a t  a possible ‘laminar- cycling-high-amplitude ’ 
transition. It is even possible mathematically to oscillate the outer cylinder to achieve 
a stable solution for Reynolds numbers greater than R,, although this may not be 
possible in a real experiment. 
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